Abstract

In Alzheimer disease and related disorders, the microtubule-associated protein tau aggregates and forms cytoplasmic lesions that impair neuronal physiology at many levels. In addition to affecting the host neuron, tau aggregates also spread to neighboring, recipient cells where the misfolded tau aggregates, in a manner similar to prions, actively corrupt the proper folding of soluble tau, and thereby impair cellular functions. One vehicle for the transmission of tau aggregates are secretory nanovesicles known as exosomes. Here, we established a simple model of a neuronal circuit using a microfluidics culture system in which hippocampal neurons A and B were seeded into chambers 1 and 2, respectively, extending axons via microgrooves in both directions and thereby interconnecting. This system served to establish two models to track exosome spreading. In the first model, we labeled the exosomal membrane by coupling tetraspanin CD9 with either a green or red fluorescent tag. This allowed us to reveal that interconnected neurons exchange exosomes only when their axons extend in close proximity. In the second model, we added exosomes isolated from the brains of tau transgenic rTg4510 mice (i.e. exogenous, neuron A-derived) to neurons in chamber 1 (neuron B) interconnected with neuron C in chamber 2. This allowed us to demonstrate that a substantial fraction of the exogenous exosomes were internalized by neuron B and passed then on to neuron C. This transportation from neuron B to C was achieved by a mechanism that is consistent with the hijacking of secretory endosomes by the exogenous exosomes, as revealed by confocal, super-resolution and electron microscopy. Together, these findings suggest that fusion events involving the endogenous endosomal secretory machinery increase the pathogenic potential and the radius of action of pathogenic cargoes carried by exogenous exosomes.

Highlights

  • Alzheimer disease (AD), the most common form of aging dementia, is characterized by problems with memory, thinking and behavior [50]

  • Our research focuses on exosomes, membranous secreted nanovesicles 30–150 nm in size, that are produced in late endosomes by the inward budding of the endosomal membrane, which is progressively pinched off to generate and accumulate intraluminal nanovesicles [11, 38, 45]

  • We have demonstrated that tau seeds are contained within exosomes isolated from the brains of tauopathy mice, that they have a distinct phosphorylation pattern, and that only exosomes derived from cells undergoing tau aggregation are able to seed and corrupt soluble tau in recipient cells, a phenomenon that occurs in a thresholddependent manner [6, 51]

Read more

Summary

Introduction

Alzheimer disease (AD), the most common form of aging dementia, is characterized by problems with memory, thinking and behavior [50] These clinical features are strongly associated with the accumulation of two types of insoluble protein deposits in the AD brain, which are composed of either the amyloid-β (Aβ) peptide or the microtubuleassociated protein tau and impair neuronal function at many levels [5, 32, 44, 50]. The late endosome, loaded with intraluminal nanovesicles, gradually develops into large multivesicular bodies (MVBs) These MVBs can fuse with the plasma membrane to release the intraluminal nanovesicles into the extracellular environment, and once secreted these free nanovesicles are termed “exosomes” [11, 38, 45]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call