Abstract

PurposeAlthough human umbilical cord mesenchymal stem cells (hucMSCs) can contribute to the growth of tumors, including pancreatic ductal adenocarcinoma (PDAC), however, little is known about the exact mechanisms by which the exosomes secreted from hucMSCs (hucMSCs-exo) have an oncogenic effect on the physiopathology of PDAC. The effects of hucMSCs on tumor development are attributed to hucMSCs-exo, which deliver unique proteins and miRNAs to cancer cells. MethodsHucMSCs and exosomes were isolated and confirmed via transmission electron microscopy, nanoparticle tracking analysis and western blot. The nude mice were inoculated subcutaneously on both flanks with human pancreatic cancer Panc-1 cells (1 × 106), and hucMSCs-exo were directly administered via intratumoral injection once a day for three days each week. Cell proliferation assays were performed using a Cell Counting Kit-8 assay and the cell invasion assay was performed using Transwell assay. The miRNA data were predicted and analyzed by miRanda software. The analysis of the target genes of the miRNAs was proformed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. ResultsFirstly, we observed that hucMSCs-exo promoted Panc-1 and BxPC3 cell growth by increasing proliferation and migration in vitro. Secondly, in a xenograft tumor model, hucMSCs-exo increased the growth of Panc-1 cells. Thirdly, high-throughput sequencing of hucMSCs-exo showed that hsa-miR-148a-3p, hsa-miR-100-5p, hsa-miR-143-3p, hsa-miR-21-5p and hsa-miR-92a-3p were highly expressed. For the five identified miRNAs, 1308 target genes were predicted by miRanda software. From the GO and KEGG analyses of the target genes of the identified miRNAs, it was found that the main GO function was the regulation of cellular glucuronidation, and the main KEGG metabolic pathway involved the metabolism of ascorbic acid and aldehyde acid. These processes are related to the occurrence and development of pancreatic cancer. Finally, we observed that miR-100-5p promoted Panc-1 and BxPC3 cell growth in vitro and in vivo. ConclusionHere, by utilizing exosomes secreted from hucMSCs, we systematically investigated the effects of hucMSCs-exo on PDAC growth in vitro and in vivo for the first time. Building on these results, we provided new insights into the role of hucMSCs-exo in the PDAC growth and revealed the attractive communication between hucMSCs and PDAC cells that occurs through MSCs-exosomes-miRNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call