Abstract

Distraction osteogenesis (DO) is a clinically effective procedure to regenerate large bone defects. However, the treatment duration is undesirably lengthy, especially in elderly patients. Exosomes derived from mesenchymal stem cells (MSC-Exos) could exert the beneficial effects while avoiding the possible complications of stem cell transplantation. This study aimed to evaluate the effects of MSC-Exos on bone regeneration during DO in older rats. Exosomes were isolated from the supernatants of young bone marrow mesenchymal stem cells (BMSCs) through ultra-centrifugation, and characterized using transmission electron microscopy, western blot, and tunable resistive pulse sensing analysis. The effects of MSC-Exos on the proliferation and differentiation of older BMSCs were evaluated using CCK-8 assay, ALP and ARS staining, and qRT-PCR. Unilateral tibial DO model was established on older Sprague-Dawley rats and MSC-Exos or phosphate buffer saline was locally injected into the distraction gaps after distraction weekly. Bone regeneration were evaluated using X-ray, Micro-CT, mechanical test, and histological staining. The MSC-Exos were round or cup-shaped vesicles ranging from 60 to 130nm in diameter and expressed markers including CD9, CD63, and TSG101. The in vitro results indicated that MSC-Exos could enhance the proliferation and osteogenic differentiation of older BMSCs. Bone regeneration was markedly accelerated in rats treated with MSC-Exos according to the results of X-ray, micro-CT, and histological analysis. The distracted tibias from the MSC-Exos group also demonstrated better mechanical properties. These results suggest that MSC-Exos promote DO-mediated bone regeneration in older rats through enhancing the proliferation and osteogenic capacity of BMSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.