Abstract

Reciprocal communication between Sertoli and Leydig cells occurs in the testes; however, the detailed mechanisms involved are not completely understood. Exosomes can communicate within neighboring or distant cells to regulate cell function. Our aim was to determine whether exosomes released from Sertoli cells can regulate the survival of Leydig cells. We found that exosomes released from rat primary Sertoli cells could be internalized by Leydig cells in vitro, and promote the survival of Leydig cells, as assessed by optical density at 450 nm, compared to untreated control (mean ± SD: 0.95 ± 0.04 vs 0.79 ± 0.03, P < 0.05). When the exosomes were injected into the interstitial area of rat testis, they could also be internalized by Leydig cells in vivo. To investigate if exosomes released from Sertoli cells can reach Leydig cells in vivo, exosomes were injected into the efferent duct, from where they entered the interstitial space from seminiferous tubules, which indicated that they may cross the blood-testis barrier (BTB). Further in vitro studies found that exosomes released from Sertoli cells significantly increased CC-chemokine ligand 20 (Ccl20) mRNA (mean ± SD: 2.79 ± 0.08 vs 0.98 ± 0.04, P < 0.01) and protein (mean ± SD: 1.08 ± 0.06 vs 0.53 ± 0.05 ng/ml, P < 0.01) levels in Leydig cells, compared to the untreated Leydig cells. CCL20 promoted the phosphorylation of AKT (protein kinase B) in Leydig cells, compared to untreated control (mean ± SD: 0.074 ± 0.002 vs 0.051 ± 0.002, P < 0.01). In conclusion, our results demonstrated that exosomes released by Sertoli cells may cross the BTB and promote the survival of Leydig cells. The findings may add new evidence for Sertoli-Leydig cell communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call