Abstract

Epithelial ovarian cancer (EOC) tends to metastasize to the peritoneum, and the prognosis of patients is poor. In the peritoneum of patients with EOC, TAMs (tumor associated macrophages) regulate the imbalance of T cell ratio and promote the progression and metastasis of EOC. However, the mechanism of peritoneal metastasis in EOC patients remains unclear. Here, we confirmed that the percentages of PD-L1+ TAMs in EOC tissues increased significantly, and TAMs-derived PD-L1+ exosomes affected the transcription factor PPARα to up-regulate the expression of CPT1A in CD8+ T cells, promote fatty acid oxidation, and increase reactive oxygen species to cause cell damage. The apoptosis of CD8+ T cells was increased, and the expressions of their exhaustion markers LAG3, TIM-3, and PD-1 were also up-regulated. TAMs affect T cell function through lipid metabolism, leading to peritoneal immune imbalance and promoting peritoneal metastasis of EOC. This study reveals the mechanism by which TAMs in the peritoneal microenvironment regulate T cell lipid metabolism through exosome delivery of PD-L1, and the effect of lipid metabolism on T cell function, reveals the molecular mechanism of tumor immune microenvironment affecting EOC metastasis, and further explores related pathways whether molecular blockade can be used as a means to intervene in disease progression is expected to establish a new strategy for the diagnosis and treatment of EOC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.