Abstract
Orally administered Lactobacillus strains, including L. plantarum No.14 and L. rhamnosus GG, reportedly reduce inflammatory cytokine production in mice. The present study tested our idea that circulating exosomes mediate the action of Lactobacillus strains. The lipopolysaccharide-induced production of TNF-α and IL-6 in vitro was attenuated in peritoneal exudate cells (PECs) isolated from C57BL/6N mice that had been fed L. plantarum No.14. When PECs were cultured for 24 h with exosomes isolated from the serum of mice fed L. plantarum No.14 or L. rhamnosus GG, accumulation of both TNF-α and of the corresponding mRNA was lowered. Growth in the presence of these exosomes also decreased the production of TNF-α and IL-6 by the murine macrophage cell line RAW264.7. In contrast, supplementation with exosome-depleted serum of mice fed L. plantarum No.14 or L. rhamnosus GG failed to affect the production of TNF-α and IL-6 by RAW264.7 cells. When PECs and RAW264.7 cells were cultured for 24 h with PKH67-labeled exosomes isolated from murine serum, fluorescent signal was observed inside the cells, suggesting that these cells incorporate serum exosomes. We propose that the anti-inflammatory activity of orally administered L. plantarum No.14 and L. rhamnosus GG is mediated, at least in part, by circulating exosomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.