Abstract

ObjectivesCardiosphere-derived cell (CDC) transplantation has been shown to attenuate right ventricular (RV) dysfunction in patients with hypoplastic left heart syndrome. However, live cell transplantation requires complex handling protocols that may limit its use. Exosomes are protein and nucleic acid-containing nanovesicles secreted by many cell types, including stem cells, which have been shown to exert a cardioprotective effect comparable with whole cells following myocardial injury. We therefore sought to evaluate 3 human CDC-derived exosome preparations in a juvenile porcine model of acute pressure-induced RV dysfunction. MethodsTwenty immunocompetent juvenile Yorkshire pigs (7-10 kg) underwent pulmonary arterial banding followed by intramyocardial test agent administration: control (n = 6), XO-1 (n = 4), XO-2 (n = 5), and XO-3 (n = 5). Animals were monitored for 28 days postoperatively with periodic phlebotomy and echocardiography, followed by extensive postmortem gross and histopathologic analysis. ResultsAll animals survived the banding operation. One died suddenly on postoperative day 1; another was excluded due to nonstandard response to banding. Of the remaining animals, there were no clinical concerns. RV fractional area change was improved in the XO-1 and XO-2 groups relative to controls at postoperative day 28. On histologic analysis, exosome-treated groups exhibited decreased cardiomyocyte hypertrophy with respect to controls. ConclusionsHuman CDC-derived exosome administration was associated with significant preservation of RV systolic function in the setting of acute pressure overload. Such acellular preparations may prove superior to whole cells and may represent a novel therapeutic approach to clinical myocardial injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.