Abstract

Objective To investigate whether exosomes from human umbilical cord mesenchymal stem cells (hUC-MSCs) can protect against the toxic effects of oxalate and calcium oxalate monohydrate (COM) crystals in human proximal tubular epithelial (HK-2) cells. Methods Exosomes were isolated from hUC-MSCs, purified by ultracentrifugation, and verified by examination of cell morphology using transmission electron microscopy and the presence of specific biomarkers. HK-2 cells received 1 of 4 treatments: control (cells alone), hUC-MSC exosomes, oxalate+COM, or oxalate+COM and hUC-MSC exosomes. Cell viability was determined using the MTT assay. Oxidative stress was determined by measuring LDH activity and the levels of H2O2, malondialdehyde (MDA), and reactive oxygen species (ROS). Expressions of N-cadherin, TGF-β, and ZO-1 were determined by immunofluorescence. Expressions of epithelial markers, mesenchymal markers, and related signaling pathway proteins were determined by western blotting. Results After 48 h, cells in the oxalate+COM group lost their adhesion, appeared long, spindle-shaped, and scattered, and the number of cells had significantly decreased. The oxalate+COM treatment also upregulated TGF-β and mesenchymal markers, downregulated epithelial markers, increased the levels of LDH, H2O2, MDA, and ROS, decreased cell viability, and increased cell migration. The isolated exosomes had double-layer membranes, had hollow, circular, or elliptical shapes, had diameters mostly between 30 and 100 nm, and expressed CD9, CD63, and Alix. Treatment of HK-2 cells with hUC-MSC exosomes reversed or partly reversed all the effects of oxalate+COM. Conclusions Exosomes from hUC-MSCs alleviate the oxidative injury and the epithelial-mesenchymal transformation of HK-2 cells that is induced by oxalate+COM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.