Abstract

ObjectiveCancer-associated mesenchymal stem cells (MSCs) regulate the progression of cancers through exosome-delivered components, while few studies are conducted on hepatocellular carcinoma (HCC). This study aimed to evaluate the effect of exosomes from HCC-associated MSCs (HCC-MSCs) on HCC cellular functions and the potential regulatory mechanism.MethodsHCC cells (Huh7 and PLC) were cultured normally or co-cultured with HCC-MSCs, HCC-MSCs plus GW4869, or HCC-MSC-derived exosomes; then mRNA sequencing and RT-qPCR validation were conducted. Subsequently, candidate genes were sorted out and modified in HCC cells. Next, TMBIM6-modified HCC-MSCs were used to treat HCC cells.ResultsBoth HCC-MSCs and their derived exosomes promoted proliferation, invasion, sphere formation ability but suppressed apoptosis in HCC cells (all p < 0.05); however, the effect of HCC-MSCs on these cellular functions was repressed by exosome inhibitor (GW4869). Subsequently, TMBIM6, EEF2, and PRDX1 were sorted out by mRNA sequencing and RT-qPCR validation as candidate genes implicated in the regulation of HCC cellular functions by HCC-MSC-derived exosomes. Among them, TMBIM6 had a potent effect (all p < 0.05), while EEF2 and PRDX1 had less effect on regulating HCC cell viability and invasion. Next, direct silencing TMBIM6 repressed viability, sphere formation, invasion, epithelial–mesenchymal transition (EMT), and PI3K/AKT pathway but promoted apoptosis in HCC cells; however, overexpressing TMBIM6 showed the opposite effect. Furthermore, incubating with exosomes from TMBIM6-modified HCC-MSCs presented a similar effect as direct TMBIM6 modification in HCC cells.ConclusionHCC-MSC-derived exosomes transmit TMBIM6 to promote malignant behavior via PI3K/AKT pathway in HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call