Abstract

Exosomes derived from mesenchymal stem cells (MSCs) are known to participate in myocardial repair after myocardial infarction (MI), but the mechanism remains unclear. Here, we isolated exosomes from adipose-derived MSCs (ADSCs) and examined their effect on MI-induced cardiac damage. To examine the underlying mechanism, H9c2 cells, cardiac fibroblasts, and HAPI cells were used to study the effect of ADSC-exosomes on hypoxia-induced H9c2 apoptosis, TGF-β1-induced fibrosis of cardiac fibroblasts, and hypoxia-induced macrophage M1 polarization using qRT-PCR, western blot, ELISA, immunohistochemistry, immunofluorescence and flow cytometry. ADSC-exosome treatment mitigated MI-induced cardiac damage by suppressing cardiac dysfunction, cardiac apoptosis, cardiac fibrosis, and inflammatory responses in vitro and in vivo. In addition, ADSC-exosome treatment promoted macrophage M2 polarization. Further experiments found that S1P/SK1/S1PR1 signaling was involved in the ADSC-exosome-mediated myocardial repair. Silencing of S1PR1 reversed the inhibitory effect of ADSC-exosomes on MI-induced cardiac apoptosis and fibrosis in vitro. ADSC-exosome-induced macrophage M2 polarization was also reversed after downregulation of S1PR1 under hypoxia conditions, which promoted NFκB and TGF-β1 expression, and suppressed the MI-induced cardiac fibrosis and inflammatory response. In sum, these results indicate that ADSC-derived exosomes ameliorate cardiac damage after MI by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call