Abstract

BackgroundAnti-angiogenic therapy has been shown to be a promising strategy for anti-tumor treatment. Increasing evidence indicates that tumor angiogenesis is affected by exosomes that are secreted by mesenchymal stem cells (MSCs), but whether exosomes derived from MSCs suppress or promote angiogenesis remain paradoxical. The purpose of this study focused on understanding the potential role of exosomes derived from stem cells of human deciduous exfoliated teeth (SHED-Exos) in regulating angiogenesis and the underlying molecular mechanism.MethodsExosomes were isolated from supernatants of SHED cells using an exosome purification kit and were characterized by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. Cell Counting Kit-8, flow cytometric assays, western blots, wound healing and transwell migration assays were performed to characterize the roles of SHED-Exos on cell proliferation, apoptosis and migration of human umbilical vein endothelial cells (HUVECs). The anti-angiogenic activity of SHED-Exos was assessed via a tube formation assay of endothelial cells and angiogenesis-related factors were analyzed by western blotting. In vivo, we used the chick chorioallantoic membrane (CAM) assay and an oral squamous cell carcinoma (OSCC) xenograft transplantation model with nude mice that received multi-point injections at three-day intervals to evaluate the effects on angiogenesis. Furthermore, the sequencing of microRNAs (miRNAs) in SHED-Exos was performed to investigate the underlying anti-angiogenic mechanism.ResultsThe results showed that SHED-Exos inhibit cell proliferation and migration and induce apoptosis in HUVECs. SHED-Exos suppress the tube-like structure formation of HUVECs in vitro. SHED-Exos downregulate several angiogenesis-related factors, including VEGFA, MMP-9 and ANGPT1. In vivo, the chick CAM assay verified that treatment with SHED-Exos inhibits micro-vascular formation, and importantly, significantly reduces the micro-vascular formation of tumors generated from xenografted OSCC cells, which was associated with the inhibition of tumor growth in vivo. Mechanistically, our data suggested that SHED-Exos are enriched with miR-100-5p and miR-1246 and are transferred to endothelial cells, which results in decreased tube formation via the down-regulation of VEGFA expression.ConclusionsThese results demonstrate that SHED-Exos inhibit angiogenesis in vitro and in vivo, which suggests that SHED-Exos could potentially serve as a novel and effective therapeutic approach for anti-angiogenic treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call