Abstract

BackgroundWNT5A is known to be involved in the pathogenesis of osteoarthritis. This study investigated the molecular mechanism of exosomal miR-92a-3p and WNT5A in chondrogenesis and cartilage degeneration.MethodsExosomal miR-92a-3p expression was assessed in vitro in a human mesenchymal stem cell (MSC) model of chondrogenesis and in normal and OA primary human chondrocytes (PHCs). MSCs and PHCs were treated with exosomes derived from MSC-miR-92a-3p (MSC-miR-92a-3p-Exos) or its antisense inhibitor (MSC-anti-miR-92a-3p-Exos), respectively. Small interfering RNAs (siRNAs) and luciferase reporter assay were used to reveal the molecular role of exosomal miR-92a-3p and WNT5A in chondrogenesis. The protective effect of exosomes in vivo was measured using Safranin-O and Fast Green staining and immunohistochemical staining.ResultsExosomal miR-92a-3p expression was elevated in the MSC chondrogenic exosome, while it was significantly reduced in the OA chondrocyte-secreted exosome compared with normal cartilage. Treatment with MSC-miR-92a-3p-Exos promoted cartilage proliferation and matrix genes expression in MSCs and PHCs, respectively. In contrast, treatment with MSC-anti-miR-92a-3p-Exos repressed chondrogenic differentiation and reduced cartilage matrix synthesis by enhancing the expression of WNT5A. Luciferase reporter assay demonstrated that miR-92a-3p suppressed the activity of a reporter construct containing the 3’-UTR and inhibited WNT5A expression in both MSCs and PHCs. MSC-miR-92a-3p-Exos inhibit cartilage degradation in the OA mice model.ConclusionsOur results suggest that exosomal miR-92a-3p regulates cartilage development and homeostasis by directly targeting WNT5A. This indicates that exosomal miR-92a-3p may act as a Wnt inhibitor and exhibits potential as a disease-modifying osteoarthritis drug.

Highlights

  • WNT5A is known to be involved in the pathogenesis of osteoarthritis

  • Identification of mesenchymal stem cell (MSC) and MSC-Exos MSCs were extracted during iliac crest aspiration and were isolated and identified at passage 5 (P5) for use in subsequent experiments

  • Among the miRNAs that were consistently differentially expressed in all three paired samples, 36 were upregulated and 105 were downregulated in chondro-differentiated MSC-Exos compared to levels in MSC-Exos, as shown in Additional file 1

Read more

Summary

Introduction

WNT5A is known to be involved in the pathogenesis of osteoarthritis. This study investigated the molecular mechanism of exosomal miR-92a-3p and WNT5A in chondrogenesis and cartilage degeneration. Osteoarthritis (OA) is strongly associated with joint degenerative diseases, and leads to chronic pain, disability, and economic burden [1]. OA is characterized by the loss of extracellular matrix (ECM) and cartilage destruction. Increasing evidence has suggested that mesenchymal stem cells (MSCs)-derived exosomes play a vital role in modulating cell migration, proliferation, differentiation, and matrix synthesis [4,5,6]. In 2010, it was first reported that the exosome was the active agent secreted by MSCs in response to myocardial ischemia reperfusion (I/ R) injury [7]. It has been reported that MSC exosomes mediate cartilage repair and regeneration by

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call