Abstract

BackgroundIntrauterine adhesion (IUA) is one of the most serious complications in patients with endometrial repair disorder after injury. Currently, there is no effective treatment for IUA. Stem cell is the main candidate of new therapy, which functions mainly through paracrine mechanism. Stem-derived exosomes (Exo) play an important role in tissue injury. Here, we mainly aim to study the effect of bone marrow mesenchymal stem cell (BMSC)-derived Exo on repairing endometrium of IUA animal models and its effect on TGF-β1 induced EMT in endometrial epithelial cells (EECs).MethodsTotally, 64 female rabbits were randomly divided into Sham operation group, model group, BMSC treatment group, and Exo treatment group. EMT in EECs was induced by TGF-β1. Then, EECs were treated with Exo (25 μg/ml, 50 μg/ml, 100 μg/ml) for 24 h. HE staining and Masson staining were used to evaluate the changes in glandular number and fibrosis area. The expression levels of CK19 and VIM were detected by immunohistochemistry. Western blotting was used to detect the expression of CK19, VIM, FSP-1, E-cadherin, TGF-β1, TGF-β1R, Smad 2, and P-Smad 2. RT-PCR was used to detect mRNA expression levels of CK19, VIM, FSP-1, E-cadherin, TGF-β1, TGF-β1R, and Smad 2.ResultsCompared with the model group, the number of endometrial glands was significantly increased and endometrial fibrosis area was significantly decreased in BMSC and Exo groups (P < 0.05). CK19 level significantly increased whereas VIM level significantly decreased after treatment of BMSCs and Exo (P < 0.05). Additionally, the expressions of TGF-β1, TGF-β1R, and Smad2 mRNA were all significantly decreased after BMSC and Exo treatment (P < 0.05). Besides, phosphorylation levels of TGF-β1, TGF-β1R, and Smad2 were also significantly decreased in BMSC and Exo treatment groups (P < 0.05). Furthermore, there was no significant difference between BMSC and Exo treatment groups (P > 0.05). EMT was induced in EECs by 60 ng/ml TGF-β1 for 24 h. After Exo treatment for 24 h, mRNA expressions of CK-19 and E-cadherin increased, while those of VIM, FSP-1, TGF-β1, and Smad2 decreased. Additionally, protein expressions of CK-19 and E-cadherin increased, while those of VIM, FSP-1, TGF-β1, Smad2, and P-Smad2 decreased.ConclusionsBMSC-derived Exo is involved in the repair of injured endometrium, with similar effect to that of BMSC, and can reverse EMT in rabbit EECs induced by TGF-β1. BMSC-derived Exo may promote endometrial repair by the TGF-β1/Smad signaling pathway.

Highlights

  • Intrauterine adhesion (IUA) is one of the most serious complications in patients with endometrial repair disorder after injury

  • bone marrow mesenchymal stem cells (BMSCs)-derived Exo is involved in the repair of injured endometrium, with similar effect to that of BMSC, and can reverse Epithelial-mesenchymal transition (EMT) in rabbit epithelial cells (EECs) induced by Transforming growth factor (TGF)-β1

  • Identification of BMSCs After 3 generations of culture, the cells showed fibroblast-like morphology, grew adherently, and arranged in a spiral pattern (Fig. 1a)

Read more

Summary

Introduction

Intrauterine adhesion (IUA) is one of the most serious complications in patients with endometrial repair disorder after injury. We mainly aim to study the effect of bone marrow mesenchymal stem cell (BMSC)derived Exo on repairing endometrium of IUA animal models and its effect on TGF-β1 induced EMT in endometrial epithelial cells (EECs). Endometrial repair disorder after injury refers to the damage of endometrial basal layer, which leads to intrauterine adhesion (IUA), amenorrhea, secondary infertility, and other diseases as the result of endometrial fibrous repair [1]. Epithelial-mesenchymal transition (EMT), one of the most important mechanisms of fibrotic diseases [2], has been found to be closely related to the occurrence of IUA presently. Our previous work found that Vimentin (VIM) was highly expressed in injured endometrial epithelial cell of IUA animal model [3]. It is suggested that endometrial fibrosis might be the result of EMT in the endometrial cell, which eventually leads to endometrial scar healing

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.