Abstract

BackgroundMyocardial infarction (MI) represents a severe cardiovascular disease with limited therapeutic agents. This study was aimed to elucidate the role of the exosomes derived from human placental mesenchymal stem cells (PMSCs-Exos) in MI.MethodsPMSCs were isolated and cultured in vitro, with identification by both transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). To further investigate the effects of PMSC-Exos on MI, C57BL/6 mice were randomly divided into Sham group, MI group, and PMSC-Exos group. After 4 weeks of the intervention, cardiac function was assessed by cardiac echocardiography, electrocardiogram and masson trichrome staining; lipid indicators were determined by automatic biochemical instrument; inflammatory cytokines were measured by cytometric bead array (CBA); gut microbiota, microbial metabolites short chain fatty acids (SCFAs) as well as lipopolysaccharide (LPS) were separately investigated by 16S rRNA high throughput sequencing, gas chromatography mass spectrometry (GC–MS) and tachypleus amebocyte lysate kit; transcriptome analysis was used to test the transcriptional components (mRNA\\miRNA\\cirRNA\\lncRNA) of PMSC-Exos.ResultsWe found that human PMSC-Exos were obtained and identified with high purity and uniformity. MI model was successfully established. Compared to MI group, PMSC-Exos treatment ameliorated myocardial fibrosis and left ventricular (LV) remodeling (P < 0.05). Moreover, PMSC-Exos treatment obviously decreased MI molecular markers (AST/BNP/MYO/Tn-I/TC), pro-inflammatory indicators (IL-1β, IL-6, TNF-α, MCP-1), as well as increased HDL in comparison with MI group (all P < 0.05). Intriguingly, PMSC-Exos intervention notably modulated gut microbial community via increasing the relative abundances of Bacteroidetes, Proteobacteria, Verrucomicrobia, Actinobacteria, Akkermansia, Bacteroides, Bifidobacterium, Thauera and Ruminiclostridium, as well as decreasing Firmicutes (all P < 0.05), compared with MI group. Furthermore, PMSC-Exos supplementation increased gut microbiota metabolites SCFAs (butyric acid, isobutyric acid and valeric acid) and decreased LPS in comparison with MI group (all P < 0.05). Correlation analysis indicated close correlations among gut microbiota, microbial SCFAs and inflammation in MI.ConclusionsOur study highlighted that PMSC-Exos intervention alleviated MI via modulating gut microbiota and suppressing inflammation.

Highlights

  • Myocardial infarction (MI) represents a severe cardiovascular disease with limited therapeutic agents

  • Our study highlighted that placental mesenchymal stromal cells (PMSCs)-Exos intervention alleviated MI via modulating gut microbiota and suppressing inflammation

  • Exosomes with the size of 130.6 nm accounted for 99% of the total, suggesting successful isolations of human PMSC-Exos

Read more

Summary

Introduction

Myocardial infarction (MI) represents a severe cardiovascular disease with limited therapeutic agents. Myocardial infarction (MI) represents a severe cardiovascular disease, characterized by coronary ischemia and associated myocardial necrosis [1], contributing to the pathological ventricular remodeling and ventricular dysfunction and heart failure [2]. Upon MI, massive death of cardiomyocytes triggers a strong inflammatory response with the main manifestation of higher concentrations of interleukin (IL)-6, IL-1β, monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor α (TNF-α) [5, 6]. Anti-TNF-α therapy dramatically decreased inflammatory cytokine levels, inflammatory cell infiltration in and around the infarct area [5]. A survey has suggested that fibroblasts exert pro-inflammatory and matrix-degrading effects in the early inflammation phase of MI [7]. Anti-inflammation is a critical approach in improving cardiac injury and left ventricular (LV) remodeling

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call