Abstract

BackgroundAlzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognitive ability. Exosomes derived from bone-marrow mesenchymal stem cells (BMSC-exos) are extracellular vesicles that can execute the function of bone-marrow mesenchymal stem cells (BMSCs). Given the versatile therapeutic potential of BMSC and BMSC-exos, especially their neuroprotective effect, the aim of this study was to investigate the potential effect of BMSC-exos on AD-like behavioral dysfunction in mice and explore the possible molecular mechanism.MethodsBMSC-exos were extracted from the supernatant of cultured mouse BMSCs, which were isolated from the femur and tibia of adult C57BL/6 mice, purified and sorted via flow cytometry, and cultured in vitro. BMSC-exos were identified via transmission electron microscopy, and typical marker proteins of exosomes were also detected via Western blot. A sporadic AD mouse model was established by intracerebroventricular injection of streptozotocin (STZ). Six weeks later, BMSC-exos were administered via lateral ventricle injection or caudal vein injection lasting five consecutive days, and the control mice were intracerebroventricularly administered an equal volume of solvent. Behavioral performance was observed via the open field test (OFT), elevated plus maze test (EPM), novel object recognition test (NOR), Y maze test (Y-maze), and tail suspension test (TST). The mRNA and protein expression levels of IL-1β, IL-6, and TNF-α in the hippocampus were measured via quantitative polymerase chain reaction (qPCR) and Western blot, respectively. Moreover, the protein expression of Aβ1-42, BACE, IL-1β, IL-6, TNF-α, GFAP, p-Tau (Ser396), Tau5, synaptotagmin-1 (Syt-1), synapsin-1, and brain-derived neurotrophic factor (BDNF) in the hippocampus was detected using Western blot, and the expression of GFAP, IBA1, Aβ1−42 and DCX in the hippocampus was measured via immunofluorescence staining.ResultsLateral ventricle administration, but not caudal vein injection of BMSC-exos improved AD-like behaviors in the STZ-injected mouse model, as indicated by the increased number of rearing, increased frequency to the central area, and increased duration and distance traveled in the central area in the OFT, and improved preference index of the novel object in the NOR. Moreover, the hyperactivation of microglia and astrocytes in the hippocampus of the model mice was inhibited after treatment with BMSC-exos via lateral ventricle administration, accompanied by the reduced expression of IL-1β, IL-6, TNF-α, Aβ1-42, and p-Tau and upregulated protein expression of synapse-related proteins and BDNF. Furthermore, the results of the Pearson test showed that the preference index of the novel object in the NOR was positively correlated with the hippocampal expression of BDNF, but negatively correlated with the expression of GFAP, IBA1, and IL-1β. Apart from a positive correlation between the hippocampal expression of BDNF and Syt-1, BDNF abundance was found to be negatively correlated with markers of glial activation and the expression of the inflammatory cytokines, Aβ1-42, and p-Tau, which are characteristic neuropathological features of AD.ConclusionsLateral ventricle administration, but not caudal vein injection of BMSC-exos, can improve AD-like behavioral performance in STZ-injected mice, the mechanism of which might be involved in the regulation of glial activation and its associated neuroinflammation and BDNF-related neuropathological changes in the hippocampus.

Highlights

  • Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognitive ability

  • The hyperactivation of microglia and astrocytes in the hippocampus of the model mice was inhibited after treatment with bone-marrow mesenchymal stem cells (BMSCs)-exos via lateral ventricle administration, accompanied by the reduced expression of Interleukin 1β (IL-1β), Interleukin 6 (IL-6), Tumor necrosis factor (TNF-α), Aβ1-42, and Phosphorylated Tau protein (p-Tau) and upregulated protein expression of synapse-related proteins and brain-derived neurotrophic factor (BDNF)

  • The results of the Pearson test showed that the preference index of the novel object in the novel object recognition test (NOR) was positively correlated with the hippocampal expression of BDNF, but negatively correlated with the expression of Glial fibrillary acidic protein (GFAP), Ionized calcium binding adapter molecule 1 (IBA1), and IL-1β

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognitive ability. Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, accounting for approximately 50–60% of all dementias [1]. According to the latest statistics from the Alzheimer’s Association of the United States, as of 2020, more than 50 million people worldwide have suffered from dementia, and this number will reach 150 million by the middle half of the twenty-first century. Investigations targeting the pathogenesis and treatment of AD have been ongoing for more than a century, the etiology of AD is still controversial [5]. “Brain Plan”, the targeted investigation into the pathogenesis of AD and potential therapeutic drugs, has been carried out in many countries

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.