Abstract

Tissue engineering can be used to repair tissue by employing bioscaffolds that provide better spatial control, porosity, and a three-dimensional (3D) environment like the human body. Optimization of injectability, biocompatibility, bioactivity, and controlled drug release are also features of such scaffolds. The 3D shape of the scaffold can control cell interaction and improve cell migration, proliferation, and differentiation. Exosomes (EXOs) are nanovesicles that can regulate osteoblast activity and proliferation using a complex composition of lipids, proteins, and nucleic acids in their vesicles. Due to their excellent biocompatibility and efficient cellular internalization, EXOs have enormous potential as desirable drug/gene delivery vectors in the field of regenerative medicine. They can cross the biological barrier with minimal immunogenicity and side effects. Scaffolds that contain EXOs have been studied extensively in both basic and preclinical settings for the regeneration and repair of both hard (bone, cartilage) and soft (skin, heart, liver, kidney) tissue. Cell motility, proliferation, phenotype, and maturation can all be controlled by EXOs. The angiogenic and anti-inflammatory properties of EXOs significantly influence tissue healing. The current study focused on the use of EXO-loaded scaffolds in hard tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call