Abstract
Numerous noninvasive methods are currently being used to determine biomarkers for diseases such as cancer. However, these methods are not always precise and reliable. Thus, there is an unmet need for better diagnostic and prognostic biomarkers that will be used to diagnose cancer in early, more treatable stages of the disease. Exosomes are extracellular vesicles of endocytic origin released by the majority of cells. Exosomes contain and transport nucleic acids, proteins, growth factors, and cytokines from their parent cells to surrounding or even distant cells via circulation in biofluids. Exosomes have attracted the interest of researchers, as recent data indicate that exosome content may be indicative of disease stages and may contribute to disease progression via exosome-mediated extracellular communication. Therefore, the contents of these vesicles are being investigated as possible biomarkers for disease diagnosis and prognosis. The functions of exosomes and their contents in disease development are becoming clearer as isolation and analytical methods, such as RNA sequencing, advance. In this review, we discuss current advances and challenges in exosomal content analyses with emphasis on information that can be generated using RNA sequencing. We also discuss how the RNA sequencing of exosomes may be used to discover novel biomarkers for the detection of different stages for various cancers using specific microRNAs that were found to be differentially expressed between healthy controls and cancer-diagnosed subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.