Abstract

Atherosclerosis is a disease of large- and medium-sized arteries that is caused by cholesterol accumulation in arterial intimal cells, including macrophages and smooth muscle cells (SMC). Cholesterol accumulation in these cells can be prevented or reversed in preclinical models-and atherosclerosis reduced-by transgenesis that increases expression of molecules that control cholesterol efflux, including apolipoprotein AI (apoAI) and ATP-binding cassette subfamily A, member 1 (ABCA1). In a previous work, we showed that transduction of arterial endothelial cells (EC)-with a helper-dependent adenovirus (HDAd) expressing apoAI-enhanced EC cholesterol efflux in vitro and decreased atherosclerosis in vivo. Similarly, overexpression of ABCA1 in cultured EC increased cholesterol efflux and decreased inflammatory gene expression. These EC-targeted gene-therapy strategies might be improved by concurrent upregulation of cholesterol-efflux pathways in other intimal cell types. Here, we report modification of this strategy to enable delivery of therapeutic nucleic acids to cells of the sub-endothelium. We constructed an HDAd (HDAdXMoAntimiR33a5p) that expresses an antagomiR directed at miR-33a-5p (a microRNA that suppresses cholesterol efflux by silencing ABCA1). HDAdXMoAntimiR33a5p contains a sequence motif that enhances uptake of anti-miR-33a-5p into exosomes. Cultured EC release exosomes containing small RNA, including miR-33a-5p. After transduction with HDAdXMoAntimiR33a5p, EC-derived exosomes containing anti-miR-33a-5p accumulate in conditioned medium (CM). When this CM is added to macrophages or SMC, anti-miR-33a-5p is detected in these target cells. Exosome-mediated transfer of anti-miR-33a-5p reduces miR-33a-5p by ∼65-80%, increases ABCA1 protein by 1.6-2.2-fold, and increases apoAI-mediated cholesterol efflux by 1.4-1.6-fold (all p ≤ 0.01). These effects were absent in macrophages and SMC incubated in exosome-depleted CM. EC transduced with HDAdXMoAntimiR33a5p release exosomes that can transfer anti-miR-33a-5p to other intimal cell types, upregulating cholesterol efflux from these cells. This strategy provides a platform for genetic modification of intimal and medial cells, using a vector that transduces only EC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call