Abstract

Inflammatory molecules and exosomes are crucial for signal transduction between tumor-associated macrophages and tumor cells. IL-6, a key inflammatory molecule secreted by M2 macrophages after polarization, can mediate malignant progression of pancreatic cancer (PC). However, the functions and mechanisms of IL-6 and tumor-derived exosomes in tumor-associated macrophages and PC remain unclear. Transcriptome chip and quantitative reverse transcription PCR experiments indicated that FGD5-AS1 induced IL-6 and high FGD5-AS1 expression correlated with the poor prognosis in PC patients. RNA pulldown, mass spectrometry, and dual luciferase reporter assays were used to identify the mechanism of exosomal FGD5-AS1 in promoting PC progression and M2 macrophage polarization. FGD5-AS1 exerted cancer-promoting functions when co-cultured with M2 macrophages. PC-derived exosomal FGD5-AS1 stimulated M2 macrophage polarization by activating STAT3/NF-κB pathway. FGD5-AS1 interacts with p300, resulting in STAT3 acetylation, thus promoting nuclear localization and transcriptional activity of STAT3/NF-κB. These data indicated that PC cells generate FGD5-AS1-rich exosomes, which cause M2 macrophage polarization to promote the malignant behaviors of PC cells. Targeting exosomal FGD5-AS1 may provide a potential diagnosis and treatment strategy for PC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call