Abstract
Activated neutrophil-derived exosomes reportedly contribute to the proliferation of airway smooth muscle cells (ASMCs), thereby aggravating the airway wall remodeling during asthma; however, the specific mechanism remains unclear. Lipopolysaccharide (LPS)-EXO and si-CRNDE-EXO were extracted from the media of human neutrophils treated with LPS and LPS + si-CRNDE (a siRNA targets long non-coding RNA CRNDE), respectively. Human ASMCs were co-cultured with LPS-EXO or si-CRNDE-EXO, and cell viability, proliferation and migration were measured. The interplay of colorectal neoplasia differentially expressed (CRNDE), inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ) and nuclear receptor subfamily 2 group C member 2 (TAK1) was explored using RNA immunoprecipitation (RIP) and Co-IP assays. A mouse model of asthma was induced using ovalbumin. CRNDE was upregulated in LPS-EXO and successfully transferred from LPS-treated neutrophils to ASMCs through exosome. Mechanically, CRNDE loaded in LPS-EXO reinforced TAK1-mediated IKKβ phosphorylation, thereby activating the nuclear factor kappa B (NF-κB) pathway. Functionally, silencing CRNDE in LPS-EXO, an IKKβ inhibitor, and an NF-κB inhibitor all removed the upregulation of cell viability, proliferation and migration induced by LPS-EXO in ASMCs. In the end, the in vivo experiment demonstrated that CRNDE knockdown in neutrophils effectively reduced the thickness of bronchial smooth muscle in a mouse model for asthma. Activated neutrophils-derived CRNDE was transferred to ASMCs through exosomes and activated the NF-κB pathway by enhancing IKKβ phosphorylation. The latter promoted the proliferation and migration of ASMCs and then contributed to airway remodeling in asthma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.