Abstract

Bladder cancer stem cells (BCSCs) are considered as the root cause of BC initiation and recurrence, and exosomes derived from BCSCs (CSCs-exo) are the vital tool for establishing a stable tumor microenvironment. miR-105-5p has been revealed to promote tumor growth in a variety of cancers, but the effects on BC are still not included.Characteristics of CSCs-exo were examined by transmission electron microscope and nanoparticle tracking analysis. PKH67 dye was used to observe the cellular uptake of exosomes. Cell viability, migration and invasion were detected by CCK-8, wound healing and transwell invasion assays, respectively. The interaction between miR-105-5p and GPR12 was verified by luciferase activity assay. Xenografts were induced in the nude mice, and H&E staining method was applied to analyze the histological changes of xenografts. CSCs-exo efficiently promoted BC cell viability, migration and invasion. miR-105-5p was highly expressed in CSCs and CSCs-exo treatment significantly upregulated the expression of miR-105-5p in BC cells.GPR12 was subsequently verified to be the target gene of miR-105-5p, and overexpression of GPR12 abrogated the effects of miR-105-5p on BC cell growth and metastasis. Reversely, the anti-tumor function of miR-105-5p antagomir was observed in the xenograft mice.CSCs aggravated the malignancy of BC partly through transmitting exosomal miR-105-5p to BC cells to inhibit the expression of GPR12, which developed a novel aspect for CSC-targeted therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call