Abstract

Parkinson's disease (PD) is a prevalent neurodegenerative condition primarily affecting the elderly population. Despite its high incidence in aged individuals, there are no reliable blood-based biomarkers for clinical diagnosis of PD and early screening of susceptible individuals. Recent studies have revealed the significance of exosomes in mediating cell-to-cell communications by transferring bioactive molecules, such as proteins, nucleic acids (including miRNAs), lipids, and metabolites, between cells. Due to their ability to carry diverse molecular cargo and their involvement in various physiological and pathological processes, exosomes have gained significant attention as potential disease biomarkers. Notably, exosomes have the ability to cross the blood-brain barrier, and as a result, they can be found in circulating body fluids, including cerebrospinal fluid (CSF), serum, and plasma. Therefore, the identification of PD-specific exosomes in blood samples could be a promising avenue with biomarker potential for advancing clinical diagnosis and planning therapeutic strategies. This review highlights the current understanding of exosomal miRNAs in PD pathology, emphasising their potential for clinical utility as biomarkers even though several challenges may have to be overcome to precisely utilize exosomal miRNAs as biomarkers specific to PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call