Abstract

BackgroundThere is growing evidence discussing the role of long non-coding RNAs (lncRNAs) in cervical cancer (CC). We performed this study to explore the impact of exosomal lncRNA urothelial cancer-associated 1 (UCA1) in CC stem cells by sponging microRNA-122-5p (miR-122-5p) and regulating SOX2 expression.MethodsCC stem cells (CD133+CaSki) and exosomes were extracted and identified. The synthesized UCA1- and miR-122-5p-related sequences were transfected into CaSki cells, CaSki cells-derived exosomes were extracted and then co-cultured with CD133+CaSki cells. The functional roles of UCA1 and miR-122-5p in self-renewal and differentiation ability of CC stem cells were determined using ectopic expression, knockdown/depletion and reporter assay experiments. An in vivo experiment was performed to verify the in vitro results.ResultsUp-regulated UCA1 and SOX2 and down-regulated miR-122-5p were found in CaSki-Exo. Exosomes promoted invasion, migration, proliferation and restrained apoptosis of CD133+CaSki cells. Silencing UCA1 or up-regulating miR-122-5p degraded SOX2 expression, and reduced invasion, migration and proliferation of CD133+CaSki cells while advanced apoptosis and suppressed the tumor volume and weight in nude mice.ConclusionOur study provides evidence that CaSki-Exo can promote the self-renewal and differentiation ability of CC stem cells while silencing UCA1 or up-regulating miR-122-5p restrains self-renewal and differentiation of CC stem cells.

Highlights

  • Cervical cancer (CC) is one of the main causes of cancer death in women [1]

  • Cell culture and sorting of CC stem cells ­(CD133+CaSki) Human CC cell line CaSki was purchased from the Cell bank of the Typical Culture Preservation Committee of the Chinese Academy of Sciences, cultured in dulbecco’s modified eagle medium (DMEM) containing 10% fetal bovine serum (FBS) and placed in a saturated humidity incubator with 37 °C, 5% ­CO2

  • CaSki‐Exo advance invasion and migration of CaSki cells To observe the uptake of CaSki-Exo by C­ D133+CaSki cells, CaSki-Exo were co-cultured with C­ D133+CaSki cells after labeling with PKH-26 dye, and a large number of CaSki-Exo with red fluorescence labeling was absorbed by ­CD133+CaSki cells under the confocal microscope (Fig. 2a)

Read more

Summary

Introduction

Cervical cancer (CC) is one of the main causes of cancer death in women [1]. High risk human papillomavirus infection [2], and some other exogenous risk factors, such as have sexual relations with several partners, or early sexual behavior, as well as smoking, could contribute to CC risk [3]. It has been explored that CC cells-derived exosomes could enhance angiogenesis in cervical squamous cell carcinoma through delivery of miR-221-3p [8]. Urothelial carcinoma associated 1 (UCA1) is a lncRNA with abnormal expression in a. There is growing evidence discussing the role of long non-coding RNAs (lncRNAs) in cervical cancer (CC). We performed this study to explore the impact of exosomal lncRNA urothelial cancer-associated 1 (UCA1) in CC stem cells by sponging microRNA-122-5p (miR-122-5p) and regulating SOX2 expression. The synthesized UCA1- and miR-122-5p-related sequences were transfected into CaSki cells, CaSki cells-derived exosomes were extracted and co-cultured with ­CD133+CaSki cells. The functional roles of UCA1 and miR-122-5p in self-renewal and differentiation ability of CC stem cells were determined using ectopic expression, knockdown/depletion and reporter assay experiments. An in vivo experiment was performed to verify the in vitro results

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call