Abstract

Preeclampsia (PE) is a vascular remodeling disorder cloesly linked to trophoblast dysfunction, involving defects in their proliferation, migration, and apoptosis. Maternal exosomal microRNAs (miRNAs) have been reported to play pivotal roles in the development of PE. However, the mechanism underlying the role of maternal exosomes in trophoblast dysfunction regarding the development of PE is poorly understood. Plasma exosomes from maternal peripheral blood were collected from pregnant women with PE and from those with normal pregnancy. Bioinformatics analysis was used to identify significantly differentially expressed miRNAs under these two conditions. The expression of the miR-3198 gene in plasma exosomes was detected using quantitative real-time polymerase chain reaction. Dual luciferase reporter assay was used to confirm binding of miR-3198 and 3'UTR region of WNT3. Cell proliferation was examined using the Cell Count Kit-8 and EdU assays, and flow cytometry was performed to detect apoptosis and cell cycle. Changes in cell migration were examined using transwell and scratch assays. Patients with PE showed decreased expression of plasma-derived exosomal miR-3198. The proliferation and migration abilities of HTR-8/SVneo and primary human trophoblast cells were both improved when cocultured with miR-3198-rich exosomes. Exposure to miR-3198-enriched exosomes facilitated cell cycle progression but reduced apoptosis in HTR-8/SVneo cells. Notably, overexpression of miR-3198 partially prevented the inhibitory effects of WNT3 on proliferation and migration in HTR-8/SVneo cells. Exosomal miR-3198 in the maternal peripheral blood may regulate the biological functions of trophoblasts by targeting WNT3 and influence the development of diseases of placental origin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call