Abstract
BackgroundExosomes, one of small extracellular vesicles, play a vital role in cell to cell communication and contribute to the advancement of tumors through their cargo molecules. Exosomal circRNAs have emerged as significant players in various types of tumors. Thus, this study aimed to investigate how exosomal circRNAs are involved in the diagnosis and progression of gastric cancer (GC). MethodsSerum exosomes were characterized using transmission electron microscopy, nanoparticle tracking analysis and Western blot. CCK-8, colony formation and transwell assays were conducted to study the function of hsa_circ_0050547 (named as circ50547). qRT-PCR was used to quantify the expression of circ50547 in GC tissues and serum exosomes. Fluorescence in situ hybridization was applied to detect the cellular distribution of circ50547. Stemness and drug-resistance were detected by sphere formation, WB, flow cytometry and half-maximal inhibitory concentration analyses. Bioinformatic analyses, luciferase experiments, qRT-PCR and WB were used to investigate molecular mechanisms. ResultsWe discovered for the first time a new type of GC-derived exosomal circRNA, circ50547. We found that circ50547 is highly expressed in both GC tissues and serum exosomes. Interestingly, we observed that the diagnostic value of exosomal circ50547 is superior to that of serum circ50547. Circ50547 overexpression enhanced the proliferation, migration, invasion, stemness and drug resistance of GC cells, while knockdown of circ50547 showed the opposite effect. Mechanistically, circ50547 acted as a sponge for miR-217 to regulate the expression of HNF1B, which promoted gastric cancer progression. ConclusionExosomal circ50547 may be a promising marker for the diagnosis and prognosis prediction of GC. These findings suggest that it plays an oncogenic role through miR-217/HNF1B signaling pathway in GC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.