Abstract

BackgroundThe ability to walk is commonly reported as a top rehabilitation priority for individuals after a stroke. However, not all individuals with stroke are able to practice walking, especially those who require more assistance from their therapist to do so. Powered robotic exoskeletons are a new generation of robotic-assisted gait training devices, designed to assist lower extremity movement to allow repetitious overground walking practice. To date, minimal research has been conducted on the use of an exoskeleton for gait rehabilitation after stroke. The following research protocol aims to evaluate the efficacy and acceptability, and thus adoptability, of an exoskeleton-based gait rehabilitation program for individuals with stroke.MethodsThis research protocol describes a prospective, multi-center, mixed-methods study comprised of a randomized controlled trial and a nested qualitative study. Forty adults with subacute stroke will be recruited from three inpatient rehabilitation hospitals and randomized to receive either the exoskeleton-based gait rehabilitation program or usual physical therapy care. The primary outcome measure is the Functional Ambulation Category at post-intervention, and secondary outcomes include motor recovery, functional mobility, cognitive, and quality-of-life measures. Outcome data will be collected at baseline, post-intervention, and at 6 months. The qualitative component will explore the experience and acceptability of using a powered robotic exoskeleton for stroke rehabilitation from the point of view of individuals with stroke and physical therapists. Semi-structured interviews will be conducted with participants who receive the exoskeleton intervention, and with the therapists who provide the intervention. Qualitative data will be analyzed using interpretive description.DiscussionThis study will be the first mixed-methods study examining the adoptability of exoskeleton-based rehabilitation for individuals with stroke. It will provide valuable information regarding the efficacy of exoskeleton-based training for walking recovery and will shed light on how physical therapists and patients with stroke perceive the device. The findings will help guide the integration of robotic exoskeletons into clinical practice.Trial registrationNCT02995265 (clinicaltrials.gov), Registered 16 December 2016.

Highlights

  • The ability to walk is commonly reported as a top rehabilitation priority for individuals after a stroke

  • This study will be the first mixed-methods study examining the adoptability of exoskeleton-based rehabilitation for individuals with stroke

  • Participant recruitment is ongoing and projected to be completed by December 31, 2020. This mixed-methods study is the first to investigate the adoptability of an exoskeleton device in stroke rehabilitation by concurrently determining the efficacy and acceptability of an exoskeleton-based gait retraining program during early stroke recovery

Read more

Summary

Methods

This nested mixed-methods study will be comprised of a multi-center, parallel-group randomized, controlled trial (RCT) with an embedded qualitative study [25]. Physical therapy during stroke rehabilitation is provided with patient-specific goals in mind, and typically places a large focus on mobility and gait training Participants in both the Exoskeleton and Usual Care group will be monitored twice a week using an activity tracker (activPAL3 micro, PAL Technologies, Glasgow, UK) to observe the amount of upright standing and walking performed in the physical therapy sessions per group. This sample size was calculated using Stata Software (version 11, StataCorp, USA) and assumes a 2-point between-group difference in the Functional Ambulation Category at the end of the intervention [40], setting power at 80% and level of significance at 0.05 (2-sided) This calculation assumes a standard deviation of 2.0 based on stroke inpatient FAC data from a study by Mehrholz et al [30]. The qualitative design was informed by the COREQ (Consolidated criteria for reporting qualitative research)

Discussion
Background
Study Procedures
Findings
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.