Abstract
ABSTRACT Equivalent gaits may be present in pedestrians that differ greatly in leg number, leg design and skeletal type. Previous studies on ghost crabs found that the transition from a slow to a fast run may resemble the change from a trot to a gallop in quadrupedal mammals. One indication of the trot–gallop gait change in quadrupedal mammals is a distinct alteration in bone strain. To test the hypothesis that ghost crabs (Ocypode quadrata) change from a trot to a gallop, we measured in vivo strains of the meropodite of the second trailing leg with miniature strain gauges. Exoskeletal strains changed significantly (increased fivefold) during treadmill locomotion at the proposed trot–gallop transition. Maximum strains attained during galloping and jumping (1000×10−6–3000×10−6) were similar to the values reported for mammals. Comparison of the maximum load possible on the leg segment (caused by muscular tension) with the strength of the segment under axial loading revealed a safety factor of 2.7, which is similar to values measured for jumping and running mammals. Equivalent gaits may result from similarities in the operation of pedestrian locomotory systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.