Abstract

The natural compound, exopolysaccharide from Lactobacillus casei NA-2 (EPS-cn2), has been shown to inhibit biofilm formation by Escherichia coli O157:H7. Although bacterial adhesion to substrate surfaces is a primary, indispensable step in this process, the mechanisms by which EPS-cn2 can block E. coli O157:H7 adhesion to biotic or abiotic surfaces remain unclear. In this study, investigation of E. coli O157:H7 response to EPS-cn2 revealed that 1 mg/mL EPS-cn2 can decrease adherence to polystyrene and confluent Caco-2 cell surfaces to 49.0% (P<0.0001) and 57.0% (P<0.01) of that in untreated E. coli O157:H7, respectively. Moreover, EPS-cn2 significantly reduced outer membrane hydrophobicity by 49.0% and decreased the electronegativity of the membrane surface charge by as much as 1.57 mV (P<0.05) compared to untreated cells. High throughput RNA sequencing indicated that genes responsible for adhesion through extracellular matrix secretion, such as poly-N-acetyl-glucosamine (PNAG) biosynthesis, locus of enterocyte effacement (LEE) proteins and outer membrane protein (OmpT) were all down-regulated in response to EPS-cn2, while chemotaxis and motility-related flagellar assembly genes were differentially up-regulated, suggesting that the EPS-cn2 may serve as an extracellular signal to attenuate adhesion-related gene expression and alter bacterial surface properties in E. coli O157:H7. These findings support the further development of EPS-cn2 for pathogenic biofilm management in clinical and industrial settings, and suggests the further targeting of adhesion-related genes to limit the persistence of this highly pathogenic strain in sensitive environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.