Abstract

Production of aberrant messenger ribonucleoprotein particles (mRNPs) is subject to quality control (QC). In yeast strains carrying mutations of the THO complex, transcription induction triggers a number of interconnected QC phenotypes: (1) rapid degradation of several mRNAs; (2) retention of a fraction of THO-dependent mRNAs in transcription site-associated foci; and (3) formation of a high molecular weight DNA/protein complex in the 3'-ends of THO target genes. Here, we demonstrate that the 3'-5' exonucleolytic domain of the nuclear exosome factor Rrp6p is necessary for establishing all QC phenotypes associated with THO mutations. The N terminus of Rrp6p is also important presumably through its binding to the Rrp6p co-factor Rrp47p. Interestingly, the 3'-5' exonucleolytic activity of Dis3p, the only other active exonuclease of the nuclear exosome, can also contribute to RNA QC in THO mutants, while other nuclear 3'-5' exonucleases cannot. Our data show that exonucleolytic attack by the nuclear exosome is needed both for provoking mRNP QC and for its ensuing elimination of faulty RNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call