Abstract
A new homogeneous electrochemical sensing strategy based on exonuclease III-assisted target recycling amplification was utilized for simple, rapid and highly sensitive detection of human immunodeficiency virus (HIV) DNA on an immobilization-free Ag(I)-assisted hairpin DNA through the cytosine-Ag(+)-cytosine coordination chemistry. The assay involved target-induced strand-displacement reaction accompanying dissociation of the chelated Ag(+) in the hairpins and exonuclease III-triggered target recycling. Initially, the added target DNA hybridized with hairpin DNA to disrupt the Ag(I)-coordinated hairpin probe and releases the coordinated Ag(+) ion. Then, the newly formed DNA double-stranded DNA could be cleaved by exonuclease III, and released target HIV DNA, which retriggered the strand-displacement reaction with the hairpin for target recycling, thereby resulting in formation of numerous free Ag(+) ions in the detection cell. The released Ag(+) ions can be readily captured by the negatively charged electrode, and subsequent anodic-stripping voltammetric detection of the captured Ag(+) ions are conducted to form the anodic current for the production of the electronic signal within the applied potential. Under optimal conditions, the exonuclease III-based sensing system exhibited good electrochemical responses for the detection of HIV DNA at a concentration as low as 23 fM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.