Abstract
We have been developing CRISPR-directed gene editing as an augmentative therapy for the treatment of non-small cell lung carcinoma (NSCLC) by genetic disruption of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2). NRF2 promotes tumor cell survival in response to therapeutic intervention and thus its disablement should restore or enhance effective drug action. Here, we report how NRF2 disruption leads to collateral damage in the form of CRISPR-mediated exon skipping. Heterogeneous populations of transcripts and truncated proteins produce a variable response to chemotherapy, dependent on which functional domain is missing. We identify and characterize predicted and unpredicted transcript populations and discover that several types of transcripts arise through exon skipping; wherein one or two NRF2 exons are missing. In one specific case, the presence or absence of a single nucleotide determines whether an exon is skipped or not by reorganizing Exonic Splicing Enhancers (ESEs). We isolate and characterize the diversity of clones induced by CRISPR activity in a NSCLC tumor cell population, a critical and often overlooked genetic byproduct of this exciting technology. Finally, gRNAs must be designed with care to avoid altering gene expression patterns that can account for variable responses to solid tumor therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.