Abstract

Thanks to recent improvements in techniques used for the detection of homologies, it is now clear that module exchange played a major role in protein evolution. Analysis of the genes of various modular proteins has identified a large number of cases where gene assembly was facilitated by intronic recombination--i.e., the proteins were formed by exon shuffling. Studies of the principles and mechanistic details of exon shuffling, however, revealed that this powerful evolutionary mechanism could become significant only after the appearance of spliceosomal introns typical of higher eukaryotes. Although exon shuffling is the most efficient way of constructing modular proteins, recent studies on the evolution of multidomain proteins of prokaryotes emphasize that intronic recombination is not an absolute prerequisite of module exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.