Abstract

N6-methyladenosine (m6A) is one of the most abundant chemical modifications in mRNA and plays essential roles in diverse physiological and pathological processes. m6A is highly enriched near stop codons and in long internal exons of mRNA, but the mechanism leading to this specific distribution has been unclear. Recently, three papers have solved this major problem by revealing that exon junction complexes (EJCs) act as m6A suppressors and shape the formation of the m6A epitranscriptome. Here, we briefly introduce the m6A pathway, elaborate the roles of EJC on the formation of m6A modification based on these results, and describe the effect of exon-intron structure on mRNA stability via m6A, which will help us better understand the latest progress in the m6A RNA modification field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call