Abstract
The first step in splicing of pre-mRNAs with long introns is exon definition, where U1 and U2 snRNPs bind at opposite ends of an exon. After exon definition, these snRNPs must form a complex across the upstream intron to allow splicing catalysis. Exon definition and conversion of cross-exon to cross-intron spliceosomal complexes are poorly understood. Here we demonstrate that, in addition to U1 and U2 snRNPs, cross-exon complexes contain U4, U5, and U6 (which form the tri-snRNP). Tri-snRNP docking involves the formation of U2/U6 helix II. This interaction is stabilized by a 5' splice site (SS)-containing oligonucleotide, which can bind the tri-snRNP and convert the cross-exon complex into a cross-intron, B-like complex. Our data suggest that the switch from cross-exon to cross-intron complexes can occur directly when an exon-bound tri-snRNP interacts with an upstream 5'SS, without prior formation of a cross-intron A complex, revealing an alternative spliceosome assembly pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Molecular Cell
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.