Abstract

BackgroundStudies have shown that genetic and sex differences strongly influence gene expression in mice. Given the diversity and complexity of transcripts produced by alternative splicing, we sought to use microarrays to establish the extent of variation found in mouse strains and genders. Here, we surveyed the effect of strain and sex on liver gene and exon expression using male and female mice from three different inbred strains.Results71 liver RNA samples from three mouse strains – DBA/2J, C57BL/6J and C3H/HeJ – were profiled using a custom-designed microarray monitoring exon and exon-junction expression of 1,020 genes representing 9,406 exons. Gene expression was calculated via two different methods, using the 3'-most exon probe ("3' gene expression profiling") and using all probes associated with the gene ("whole-transcript gene expression profiling"), while exon expression was determined using exon probes and flanking junction probes that spanned across the neighboring exons ("exon expression profiling"). Widespread strain and sex influences were detected using a two-way Analysis of Variance (ANOVA) regardless of the profiling method used. However, over 90% of the genes identified in 3' gene expression profiling or whole transcript profiling were identified in exon profiling, along with 75% and 38% more genes, respectively, showing evidence of differential isoform expression. Overall, 55% and 32% of genes, respectively, exhibited strain- and sex-bias differential gene or exon expression.ConclusionExon expression profiling identifies significantly more variation than both 3' gene expression profiling and whole-transcript gene expression profiling. A large percentage of genes that are not differentially expressed at the gene level demonstrate exon expression variation suggesting an influence of strain and sex on alternative splicing and a need to profile expression changes at sub-gene resolution.

Highlights

  • Studies have shown that genetic and sex differences strongly influence gene expression in mice

  • While alternative splicing has been acknowledged to play an important role in genetic diversity, few large-scale studies have investigated the effects of strain, sex and tissue on exon expression or other alternative splicing mechanisms

  • Given that at least 8 million single nucleotide polymorphisms (SNPs) exist in the mouse population [12], we decided to investigate the effects of differing genetic backgrounds and sex on alternative splicing patterns in a mammalian system

Read more

Summary

Introduction

Studies have shown that genetic and sex differences strongly influence gene expression in mice. While alternative splicing has been acknowledged to play an important role in genetic diversity, few large-scale studies have investigated the effects of strain, sex and tissue on exon expression or other alternative splicing mechanisms. Such studies have, for example, identified splicing events involved in cancer and tissue definition [5,6]. Given that at least 8 million SNPs exist in the mouse population [12], we decided to investigate the effects of differing genetic backgrounds and sex on alternative splicing patterns in a mammalian system

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.