Abstract

Titin-truncating variants (TTNtvs) are the major cause of dilated cardiomyopathy (DCM); however, allelic heterogeneity (TTNtvs in different exons) results in variable phenotypes, and remains a major hurdle for disease diagnosis and therapy. Here, we generated a panel of ttn mutants in zebrafish. Four single deletion mutants in ttn.2 or ttn.1 resulted in four phenotypes and three double ttn.2/ttn.1 mutants exhibited more severe phenotypes in somites. Protein analysis identified ttnxu071 as a near-null mutant and the other six mutants as hypomorphic alleles. Studies of ttnxu071 uncovered a function of titin in guiding the assembly of nascent myofibrils from premyofibrils. By contrast, sarcomeres were assembled in the hypomorphic ttn mutants but either became susceptible to biomechanical stresses such as contraction or degenerated during development. Further genetic studies indicated that the exon usage hypothesis, but not the toxic peptide or the Cronos hypothesis, could account for these exon-dependent effects. In conclusion, we modeled TTNtv allelic heterogeneity during development and paved the way for future studies to decipher allelic heterogeneity in adult DCM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.