Abstract

Despite recent discoveries in genome-wide association studies (GWAS) of genomic variants associated with Alzheimer’s disease (AD), its underlying biological mechanisms are still elusive. The discovery of novel AD-associated genetic variants, particularly in coding regions and from APOEε4 non-carriers, is critical for understanding the pathology of AD. In this study, we carried out an exome-wide association analysis of age-of-onset of AD with ~20,000 subjects and placed more emphasis on APOEε4 non-carriers. Using Cox mixed-effects models, we find that age-of-onset shows a stronger genetic signal than AD case-control status, capturing many known variants with stronger significance, and also revealing new variants. We identified two novel variants, rs56201815, a rare synonymous variant in ERN1, and rs12373123, a common missense variant in SPPL2C in the MAPT region in APOEε4 non-carriers. Besides, a rare missense variant rs144292455 in TACR3 showed the consistent direction of effect sizes across all studies with a suggestive significant level. In an attempt to unravel their regulatory and biological functions, we found that the minor allele of rs56201815 was associated with lower average FDG uptake across five brain regions in ADNI. Our eQTL analyses based on 6198 gene expression samples from ROSMAP and GTEx revealed that the minor allele of rs56201815 was potentially associated with elevated expression of ERN1, a key gene triggering unfolded protein response (UPR), in multiple brain regions, including the posterior cingulate cortex and nucleus accumbens. Our cell-type-specific eQTL analysis using ~80,000 single nuclei in the prefrontal cortex revealed that the protective minor allele of rs12373123 significantly increased the expression of GRN in microglia, and was associated with MAPT expression in astrocytes. These findings provide novel evidence supporting the hypothesis of the potential involvement of the UPR to ER stress in the pathological pathway of AD, and also give more insights into underlying regulatory mechanisms behind the pleiotropic effects of rs12373123 in multiple degenerative diseases including AD and Parkinson’s disease.

Highlights

  • Late-onset sporadic Alzheimer’s disease (AD) is a progressive neurodegenerative disorder accounting for50–70% of all dementia cases in the elderly population[1]

  • We included as covariates sex and three principal components (PCs) (PC2, PC8, and PC10) that were significantly associated with AD (p < 0.005) among the top ten PCs

  • Our results showed that the minor allele of this single nucleotide polymorphisms (SNPs) was associated with a dramatically higher risk of AD, in APOE ε4 non-carriers

Read more

Summary

Introduction

Late-onset sporadic Alzheimer’s disease (AD) is a progressive neurodegenerative disorder accounting for50–70% of all dementia cases in the elderly population[1]. Amyloid β-peptide (Aβ) is the primary component found in the neuritic plaques of AD patient brain, and multiple mutations in the APP gene and its related genes (PSEN1 and PSEN2) promoting Aβ production have been identified in familial (early-onset) AD2–6. These observations support a causal role of Aβ deposition in the etiology of AD. Recent genome-wide association studies (GWAS) have identified a large number of genetic variants associated with the risk of late-onset. These insights suggest the involvement of microglia in the pathology of AD

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call