Abstract

Multiple osteochondromas (MO) is an inherited skeletal disorder, and the molecular mechanism of MO remains elusive. Exome sequencing has high chromosomal coverage and accuracy, and has recently been successfully used to identify pathogenic gene mutations. In this study, exome sequencing followed by Sanger sequencing validation was first used to screen gene mutations in two representative MO patients from a Chinese family. After filtering the data from the 1000 Genome Project and the dbSNP database (build 132), the detected candidate gene mutations were further validated via Sanger sequencing of four other members of the same MO family and 200 unrelated healthy subjects. Immunohistochemisty and multiple sequence alignment were performed to evaluate the importance of the identified causal mutation. A novel frameshift mutation, c.1457insG at codon 486 of exon 6 of EXT1 gene, was identified, which truncated the glycosyltransferase domain of EXT1 gene. Multiple sequence alignment showed that codon 486 of EXT1 gene was highly conserved across various vertebrates. Immunohistochemisty demonstrated that the chondrocytes with functional EXT1 in MO were less than those in extragenetic solitary chondromas. The novel c.1457insG deleterious mutation of EXT1 gene reported in this study expands the causal mutation spectrum of MO, and may be helpful for prenatal genetic screening and early diagnosis of MO.

Highlights

  • Multiple osteochondromas (MO, OMIM 133700) is an autosomal dominant inherited disease, and is characterized by multiple cartilage-capped benign tumors, short stature and other skeletal disorders that are caused by mechanical compression of adjacent vessels and nerves [1]

  • The results of immunohistochemisty and multiple sequence alignment supported the deleterious impact of the c.1457insG mutation on EXT1 gene

  • According to the Multiple Osteochondromas Mutation Database, more than 400 EXT1 gene mutations have been reported by previous studies

Read more

Summary

Introduction

Multiple osteochondromas (MO, OMIM 133700) is an autosomal dominant inherited disease, and is characterized by multiple cartilage-capped benign tumors, short stature and other skeletal disorders that are caused by mechanical compression of adjacent vessels and nerves [1]. Exome sequencing should be unbiased and can help to identify novel causal genetic variants, since it does not focus on specific chromosomal regions or genes reported by previous linkage and association studies. Exome sequencing followed by Sanger sequencing validation, was first used to screen gene mutations in two representative MO patients from a Chinese family. After filtering the data from the 1000 Genome Project and the dbSNP database (build 132), the detected candidate gene mutations were further validated by Sanger sequencing of four other members of the same family and 200 unrelated healthy subjects. The mutation, c.1457insG, occurred at codon 486 of exon 6, causing a frameshift mutation in the glycosyltransferase domain of EXT1 gene and creating a premature stop codon at amino acid position 520 (Fig. 2c). Comparing with extragenetic solitary chondroma, the chondrocytes with functional EXT1 in MO were less than those in extragenetic solitary chondroma (Fig. 3a)

Discussion
Findings
Materials and Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call