Abstract

Congenital Disorders of Glycosylation (CDG) are new and rapidly expanding neurometabolic disorders with multisystem involvements, broad phenotypic manifestations, and variable severity. The majority results from a defect of one of the steps involved with protein or lipid N-glycosylation pathway. Almost all are inherited in autosomal recessive patterns with a few exceptions such as the X-linked ALG13. Mutations of ALG13 are reported, so far in only 10 patients, all were ascertained through exome/genome sequencing. Specifically, the ALG13 c.320A > G (p.Asn107Ser) variant was reported only in females and in all were de novo mutations. These findings may suggest an X-linked dominant inheritance of this mutation with embryonic male lethality. These patients presented with severe infantile epileptic encephalopathy, global developmental delay, and multisystem abnormalities. Only two of these females had glycosylation studies done, and both showed normal pattern of glycosylated serum transferrin isoforms, and none had their X-chromosome inactivation patterns studied.Here, we report on another female patient who is heterozygous for the same ALG13 c.320A > G (p.Asn107Ser) variant. She presented with infantile spasms, epileptic encephalopathy, hypsarrhythmia, hypotonia, developmental delay, intellectual disability, abnormal coagulation profile, feeding problems, hypotonia, and dysmorphic features. The diagnosis of CGD was suspected clinically, but glycosylation studies were done twice and showed normal patterns on both occasions. Her X-inactivation study was also done and, surprisingly, showed a random pattern of X-inactivation, with no evidence of skewness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call