Abstract
Coronary artery disease (CAD) exists on a spectrum of disease represented by a combination of risk factors and pathogenic processes. An in silico score for CAD built using machine learning and clinical data in electronic health records captures disease progression, severity and underdiagnosis on this spectrum and could enhance genetic discovery efforts for CAD. Here we tested associations of rare and ultrarare coding variants with the in silico score for CAD in the UK Biobank, All of Us Research Program and BioMe Biobank. We identified associations in 17 genes; of these, 14 show at least moderate levels of prior genetic, biological and/or clinical support for CAD. We also observed an excess of ultrarare coding variants in 321 aggregated CAD genes, suggesting more ultrarare variant associations await discovery. These results expand our understanding of the genetic etiology of CAD and illustrate how digital markers can enhance genetic association investigations for complex diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.