Abstract

BackgroundLoblolly pine (Pinus taeda L.) is one of the most widely planted and commercially important forest tree species in the USA and worldwide, and is an object of intense genomic research. However, whole genome resequencing in loblolly pine is hampered by its large size and complexity and a lack of a good reference. As a valid and more feasible alternative, entire exome sequencing was hence employed to identify the gene-associated single nucleotide polymorphisms (SNPs) and to genotype the sampled trees.ResultsThe exons were captured in the ADEPT2 association mapping population of 375 clonally-propagated loblolly pine trees using NimbleGen oligonucleotide hybridization probes, and then exome-enriched genomic DNA fragments were sequenced using the Illumina HiSeq 2500 platform. Oligonucleotide probes were designed based on 199,723 exons (≈49 Mbp) partitioned from the loblolly pine reference genome (PineRefSeq v. 1.01). The probes covered 90.2 % of the target regions. Capture efficiency was high; on average, 67 % of the sequence reads generated for each tree could be mapped to the capture target regions, and more than 70 % of the captured target bases had at least 10X sequencing depth per tree. A total of 972,720 high quality SNPs were identified after filtering. Among them, 53 % were located in coding regions (CDS), 5 % in 5’ or 3’ untranslated regions (UTRs) and 42 % in non-target and non-coding regions, such as introns and adjacent intergenic regions collaterally captured. We found that linkage disequilibrium (LD) decayed very rapidly, with the correlation coefficient (r2) between pairs of SNPs linked within single scaffolds decaying to half maximum (r2 = 0.22) within 55 bp, to r2 = 0.1 within 192 bp, and to r2 = 0.05 within 451 bp. Population structure analysis using unlinked SNPs demonstrated the presence of two main distinct clusters representing western and eastern parts of the loblolly pine range included in our sample of trees.ConclusionsThe obtained results demonstrated the efficiency of exome capture for genotyping species such as loblolly pine with a large and complex genome. The highly diverse genetic variation reported in this study will be a valuable resource for future genetic and genomic research in loblolly pine.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3081-8) contains supplementary material, which is available to authorized users.

Highlights

  • Pine (Pinus taeda L.) is one of the most widely planted and commercially important forest tree species in the USA and worldwide, and is an object of intense genomic research

  • Among all the Single nucleotide polymorphism (SNP), 58 % were located in exons with an average SNP density of 11.5 SNPs/Kbp; 53 % were located in coding regions (CDS); 2 % in five prime untranslated regions (5’ Untranslated region (UTR)); 3 % in three prime untranslated regions (3’ UTR) and 13 % in introns

  • Our results demonstrated the efficiency of exome capture for genome-wide genotyping of a species with a large, complex genome

Read more

Summary

Introduction

Pine (Pinus taeda L.) is one of the most widely planted and commercially important forest tree species in the USA and worldwide, and is an object of intense genomic research. A high level of genetic polymorphism is expected in loblolly pine due to its life traits, typical for conifer species, such as longevity, wide geographic distribution, large effective population size and high outcrossing rate. This was confirmed in early studies with isozymes [6, 7], DNA-based markers [8,9,10], and especially more recently with SNP [11,12,13] markers. About 4000 SNP markers have been genotyped in the previous association genetics studies [11, 13, 14], but many more markers are needed for genomic selection [15,16,17,18]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.