Abstract

Genetic factors associated with the risk of polycystic ovary syndrome (PCOS) remain largely unknown. Here, we conducted an optimal sequence kernel association test (SKAT-O), an exome-based rare variant association study, to clarify whether rare variants in specific genes contribute to the development of PCOS. SKAT-O was performed using exome data of 44 Japanese patients with PCOS and 301 control women. We analyzed frequencies of rare probably damaging variants in the genome. Rare variants of GSTO2 were more commonly identified in the patient group than in the control group (6/44 vs. 1/301; Bonferroni-corrected p-value, 0.028), while the frequencies of variants in other genes were comparable between the two groups. The identified GSTO2 variants were predicted to affect the function, structure, stability, hydrophobicity, and/or the formation of intrinsically disordered regions of the protein. GSTO2 encodes a glutathione transferase that mediates the oxidative stress response and arsenic metabolism. Previously, common variants in GSTO2 and its paralog GSTO1 were associated with the risk of PCOS. The results indicate that there are no genes whose rare variants account for a large fraction of the etiology of PCOS, although rare damaging variants in GSTO2 may constitute a risk factor in some cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.