Abstract
Toxoplasma gondii is an intra-cellular protozoan parasite that can infect almost all nucleated cells, eliciting host immune responses against infection. Host tissue damage is mainly caused by cellular lysis when T. gondii egresses from infected cells. However, the effects of cytokines released by host immune cells on egression of T. gondii remain elusive. This study aimed to investigate the role of tumor necrosis factor-alpha (TNF-α) on the egress of T. gondii from infected human foreskin fibroblast (HFF) cells and to elucidate the underlying mechanisms that regulate TNF-α-induced egress. Using flow cytometry to count tachyzoites of T. gondii released into cell culture medium, we found that egress of T. gondii from infected HFF cells could be induced by 10 ng/mL TNF-α in a time-dependent manner. Pre-treatment of infected HFF cells with BAPTA-AM to chelate intra-parasitic calcium could greatly inhibit TNF-α-induced egress. Similar results were obtained when using cytochalasin D to block parasite motility before the TNF-α-induced egress assay. In addition, blocking host apoptosis by Z-VAD-FMK could decrease TNF-α induced egress, while blocking necroptosis by necrostatin-1 has little impact on TNF-α-induced egress. The egressed tachyzoites displayed a normal growth rate and lost no virulence. Our results suggest that host cytokines could influence the cellular lytic processes of T. gondii, providing new insights into the relationship between host TNF-α and T. gondii pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.