Abstract

Recent evidence indicates that thyroid hormones can regulate thyrotropin secretion in vivo in part by inhibiting thyrotropin-releasing hormone (TRH) secretion itself. Therefore, to explore whether triiodothyronine (T3) interacts with the specific hypothalamic area involved in thyrotropin (TSH) secretory regulation, the paraventricular nucleus (PVN), Palkovitz micropunches from eight nuclear regions were obtained from 1,000-microns frozen coronal brain slices for immunoassay determinations of TRH. Rats were treated either with parenteral L-T3 for 6 days to induce experimental thyrotoxicosis, or 0.15 M saline. The induction of thyrotoxicosis was confirmed by demonstrating that mean plasma TSH concentrations fell from 108 to less than 10 microU/ml (p less than 0.01). TRH concentrations in the PVN were reduced concomitantly after L-T3 from 1.9 to 1.1 ng/mg protein (p less than 0.05). No reductions in TRH concentrations during T3 treatment occurred in other nuclear groupings except in the posterior hypothalamic nucleus. Total TRH content in the median eminence declined also in T3-treated animals from 1.77 to 1.29 ng, representing a 32% reduction (p less than 0.01). No significant change was seen in the median eminence content of the TRH structurally related dipeptide, cyclo(His-Pro). The data herein indicate that experimental thyrotoxicosis in the rat is associated with a selective reduction in TRH concentrations in the PVN, documenting T3 effects upon hypothalamic TRH metabolism per se.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call