Abstract

To examine whether 1 mm of spermidine (Spd) modifies plant ethylene production in response to short-term salt stress, cucumber (Cucumis sativus) seedlings were grown in nutrient solution with or without 75 mm NaCl stress for 3 days, and the leaves were sprayed with 1 mm Spd or water (control). We investigate the effects of the treatments on ethylene production, 1-aminocyclopropane-1-carboxylate (ACC) content, 1-(malonylamino) cycolpvopane-1-carboxylic acid (MACC) content, activities of 1-aminocyclopropane-1-carboxylate synthase (ACS), and 1-aminocyclopropane-1-carboxylate oxidase (ACO) and gene expression of acs2, aco1, and aco2 in the cucumber leaves. The results indicate that ethylene production was increased significantly under salt stress as did ACC and MACC content, the activities of ACS and ACO, and the transcriptional level of acs2, whereas the gene expression of aco1 and aco2 was somewhat decreased. However, exogenous Spd treatment depressed the content of ACC and MACC, ACS activity, and the level of acs2 transcripts in the leaves of salt-stressed cucumber. Although the activity of ACO and gene expressions of aco1 and aco2 increased by Spd, ethylene emission was inhibited. Our results suggest that application of exogenous Spd could reverse salinity-induced ethylene production by inhibiting the transcription and activity of ACS under salt stress. We conclude that exogenous Spd could modify the biosynthesis of ethylene to enhance the tolerance of cucumber seedlings to salt stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call