Abstract

Thioredoxin-1 (Trx-1) is a potent therapeutic agent against a variety of diseases because of its actions as an antioxidant and regulator of apoptosis. N-acetyl-p-aminophenol (APAP), commonly known as acetaminophen, generates excessive oxidative stress and triggers hepatocyte cell death, exemplified by regulated necrosis. In the present study, we investigated whether APAP-induced liver injury in a mouse model is associated with "necroptosis," and if pretreatment with recombinant Trx-1 prevents the hepatic injury caused by APAP overdose. We also explored the mechanism underlying the preventive action of Trx-1 against APAP-induced hepatic injury. In a prevention study, C3H/he mice received different doses (0, 10, 50 or 100mgkg-1 body weight) of recombinant human Trx-1 intraperitoneally, followed by a single oral dose of 300mgkg-1 of APAP. In this experimental paradigm, liver injury and lethality were markedly decreased in rhTrx-1-pretreated mice. In survival experiments, mice received rhTrx-1 followed by oral administration of a lethal dose of APAP. APAP overdose caused a series of liver toxicity-associated events, beginning with overexpression of c-fos, excessive production of reactive oxygen species and reactive nitrogen species (RNS) and leading to decreased endogenous Trx-1 expression and activation of JNK signaling pathways. Pretreatment with rhTrx-1 inhibited all of these toxicological manifestations of APAP. In addition, rhTrx-1 significantly reduced the expression of RIP-3, a critical necrosome component. Taken together, our findings indicate that rhTrx-1 prevents APAP-induced liver injury through multiple action mechanisms, including scavenging reactive oxygen species and reactive nitrogen species, restoring endogenous Trx-1 levels and inhibiting RIP-3 overexpression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call