Abstract
Stem canker is a highly destructive disease that threatens prickly ash plantations in China. This study demonstrated the effective control of stem canker in prickly ash using chitosan priming, reducing lesion areas by 46.77 % to 75.13 % across all chitosan treatments. The mechanisms underlying chitosan-induced systemic acquired resistance (SAR) in prickly ash were further investigated. Chitosan increased H2O2 levels and enhanced peroxidase and catalase enzyme activities. A well-constructed regulatory network depicting the genes involved in the SAR and their corresponding expression levels in prickly ash plants primed with chitosan was established based on transcriptomic analysis. Additionally, 224 ZbWRKYs were identified based on the whole genome of prickly ash, and their phylogenetic evolution, conserved motifs, domains and expression patterns of ZbWRKYs were comprehensively illustrated. The expression of 12 key genes related to the SAR was significantly increased by chitosan, as determined using reverse transcription-quantitative polymerase chain reaction. Furthermore, the activities of defensive enzymes and the accumulation of lignin and flavonoids in prickly ash were significantly enhanced by chitosan treatment. Taken together, this study provides valuable insights into the chitosan-mediated activation of the immune system in prickly ash, offering a promising eco-friendly approach for forest stem canker control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.