Abstract
This study investigated the ameliorative potential of exogenous phosphatidylcholine (PC) against aluminum-induced toxicity in male albino rats. Four groups of rats were used for this study (N=8): group I served as the control, group II (PC treated) received L-α-phosphatidylcholine (egg yolk-derived) 100mg/kg bwt/day orally, group III (aluminum treated) received aluminum chloride 100mg/kg bwt/day orally, and group VI (aluminum+PC treated) received similar oral dose of aluminum and PC (100mg/kg bwt/day). Treatment was continued for 8weeks. Results revealed that aluminum chloride treatment leading to a significant elevation in serum aspartate aminotransferase, serum alanine aminotransferase, urea, creatinine, malondialdehyde, serum cytokines (tumor necrosis factor-α, interleukin-6), and brain content of acetylcholine, as well as a significant reduction in serum-reduced glutathione, serum testosterone, and brain content of acetylcholinesterase. Moreover, aluminum administration caused significant histopathological alteration in liver, kidney, brain, testes, and epididymis. Co-treatment with exogenous PC resulted in significant improvement in intensity of histopathologic lesions, serum parameters, testosterone level, proinflammatory cytokines, and oxidative/antioxidative status. However, it does not affect the brain content of acetylcholine and acetylcholinesterase. Conclusively, treatment with exogenous PC can retrieve the adverse effect of aluminum toxicities through its antioxidative and anti-inflammatory properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.