Abstract

The human immunodeficiency virus (HIV) Nef protein plays a critical role in AIDS pathogenesis by enhancing replication and survival of the virus within infected cells and by facilitating its spread in vivo. Most of the data obtained so far have been in experiments with endogenous Nef protein, so far overlooking the effects of exogenous soluble Nef protein. We used recombinant exogenous Nef proteins to activate nuclear transcription factors NF-kappaB and AP-1 in the promonocytic cell line U937. Exogenous SIV and HIV-1 Nef proteins activated NF-kappaB and AP-1 in a dose- and time-dependent manner. Activation of NF-kappaB by exogenous Nef was concomitant to the degradation of the inhibitor of NF-kappaB, IkappaBalpha. In agreement with increased AP-1 activation, a time- and dose-dependent increase in JNK activation was observed following treatment of U937 cells with exogenous Nef. Since exogenous Nef activates the transcription factors NF-kappaB and AP-1, which bind to the HIV-1 long terminal repeat (LTR), we investigated the effect of exogenous Nef on HIV-1 replication. We observed that exogenous Nef stimulated HIV-1 LTR via NF-kappaB activation in U937 cells and enhanced viral replication in the chronically infected promonocytic cells U1. Therefore, our results suggest that exogenous Nef could fuel the progression of the disease via stimulation of HIV-1 provirus present in such cellular reservoirs as mononuclear phagocytes in HIV-infected patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.