Abstract

Heme oxygenase (HO), the enzyme responsible for heme catabolism, has been associated with the function of both skeletal and smooth muscle cells and with protection of the heart against ischemia/reperfusion injury. Exposure of skeletal muscle cultures to heme, the physiological substrate for HO, has been shown to improve differentiation and aerobic metabolism. Little is known, however, about the roles that heme and heme metabolism play in cardiac muscle, and the present study was conducted to examine the effects of exogenous heme on cultured heart cells in the presence or absence of modulators of HO activity. Treatment of neonatal rat ventricular cells with heme resulted in increases in four key indicators: (1) the activity of metabolic enzymes, (2) the rate of spontaneous contraction, (3) the level of myosin heavy chain (MyHC) expressed, and (4) the amount of actin organized as filaments. Treatment with heme while metabolically inhibiting increased HO activity altered these effects such that: (1) increases in enzyme activities were attenuated, (2) spontaneous beating ceased, (3) the level of MyHC was reduced, and (4) the amount of filamentous actin was severely decreased to the point where myofibrils were no longer evident. These results suggest that heme and its catabolites act to modulate aspects of cardiac cell function and organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.